

EPINEPHRINE IN OOHCA: THREAT OR MENACE?

TERENCE VALENZUELA MD-KEEP EPINEPHRINE

UNIVERSITY OF ARIZONA MEDICAL CENTER

RAYMOND FOWLER MD-LOSE EPINEPHRINE

UT SOUTHWESTERN MEDICAL CENTER

EACH YEAR ANOTHER ATTEMPT TO ENLIGHTEN AND ENTERTAIN

Dr. Valenzuela- Creative yet rigorous in thinking, grounded in the medical literature but not enslaved by it.

Dr. Fowler- A brute force intellect in command of an immense body of alternative facts

In previous debates, Dr. Fowler has not fared well...

J'ACCUSE! EPINEPHRINE !

"...epinephrine remains one of the most common ALS interventions, and likely increases the rate of ROSC after cardiac arrest, its effects on long-term outcomes is far less certain"

"epinephrine... may be reasonable in ... cardiac arrest However, the literature behind its use is controversial, based on initial studies in the 1960s... Epinephrine can improve ROSC but patients receiving epinephrine demonstrate decreased survival to discharge and [poorer] neurological outcome..."

 \bigcirc

Drug	Dose	Shocked	ROSC	Awake at 24 hrs	Coma or Death at 24 hrs
None	-	3 (20%)	1 (7%)	0 (0%)	1 <i>5</i> (100%)
Ері	1 mg	7 (47%)	7 (47%)	3 (20%)	12 (80%)

Redding JS JAMA 1968; 203: 93-98 Resuscitation from Ventricular Fibrillation Conclusion: Further studies will be necessary to clarify the optimal combination of drugs to enhance the effectiveness of artificial ventilation of the lungs, external cardiac massage, and external electrical countershock in resuscitation from ventricular fibrillation.

JAMA, Jan 22, 1968 • Vol 203, No 4

A DECADE AGO HAGIHARA JAMA 2012;307:1161-1168

Registry Study

417,188 cases of OOHCA 2005-2008

Propensity matched analysis

"Epinephrine associated with greater chance of ROSC before hospital arrival but a decreased chance of survival with good functional outcome at 30 days"

Odds Ratio						
Outcome	ROSC	1 month survival	Cerebral Performance Category			
Adjusted for known variables influencing survival after OOHCA	2.36	0.46	0.31			

Callaway CW. Questioning the Use of Epinephrine to Treat Cardiac Arrest JAMA 2012; 307: 1198-1200

Thus, properly evaluating this traditional therapy now seems necessary and timely and should consist of a rigorously conducted and adequately powered clinical trial comparing epinephrine with placebo during cardiac arrest. Such a trial has previously seemed unethical, and investigators who have attempted to perform this comparison have received unwarranted criticism in their communities. While awaiting results of such a definitive trial, physicians and other practitioners involved in cardiac resuscitation <u>must consider</u> <u>carefully whether continued use of epinephrine is justified</u>

Perkins GD. A Randomized Trial of Epinephrine on Outof-Hospital Cardiac Arrest 2019 379; 8: 711-721

Treatment Arm	Epinephrine	Placebo	
Number enrolled	4007	3995	
Survived to discharge	128 (3.2%)	91 (2.3%)	
Good neuro function	87 (2.2%)	63 (1.9%)	0
Severe neuro impairment	39 (0.98%)	16 (0.40%)	C

CALLAWAY CW. TESTING EPINEPHRINE FOR OUT-OF-HOSPITAL CARDIAC ARREST N ENGL J MED 2018; 379:787-788

"We must ponder whether additional treatments after he returned to of spontaneous circulation could improve functional recovery and whether drug use should differ on the basis of cardiac rhythm, and whether lower doses of epinephrine would be superior to higher doses among patients with out- of- hospital-cardiac-arrest"

I.e. Keep using epinephrine while we look for stuff that improves neurologic outcome. **FURTHER STUDY IS NEEDED**

REASON NOT TO JOIN THE EPINEPHRINE HATERS

Every Epi Black-flag article sites the same reference:

Ristagno G Crit Care Med 2009;37:1408-1414. Epinephrine reduces cerebral perfusion during CPR Methods

"Cerebral cortical microcirculatory blood flow (MBF) was measured with orthogonal polarization spectral imaging."

SERIOUSLY ? SHOW OF HANDS

NICHOL G. WHAT CHANGE IN OUTCOMES AFTER CARDIAC ARREST IS NECESSARY TO CHANGE PRACTICE? RESUSCITATION (2016); 107: 115-120

OUTCOME	CURRENT PROPORTION	CHANGE IN OUTCOME	PROJECTED OUTCOME
ROSC ON ED ARRIVAL	27%	10%	37%
SURVIVAL TO HOSPITAL DISCHARGE	9%	3%	12%
GOOD NEURO FUNCTION AT DISCHARGE	6%	2%	8%
SURVIVAL TO HOSPITAL DISCHARGE (PERKINS)	3.2%	\$ %	\$ %
SEVERE NEURO IMPAIRMENT AT DISCHARGE (PERKINS)	0.98%	\$ %	\$ %

FUTURE NEUROPROTECTION DURING CPR

Active compression decompression CPR Heads up CPR Sodium Nitroprusside enhanced CPR Post ischemic conditioning after CPR Membrane stabilizers Post ischemic conditioning with inhaled gases

> Moore JC Current Opinion Critical Care 2017; 23: 215-222

