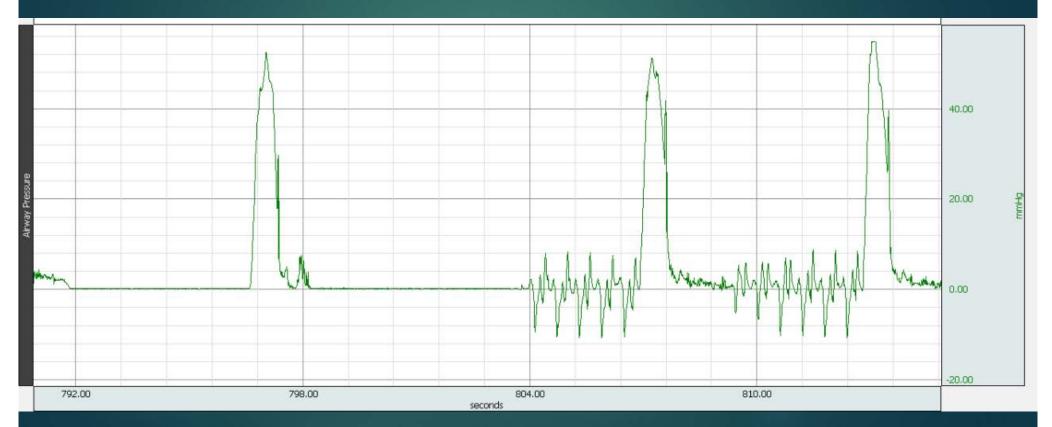
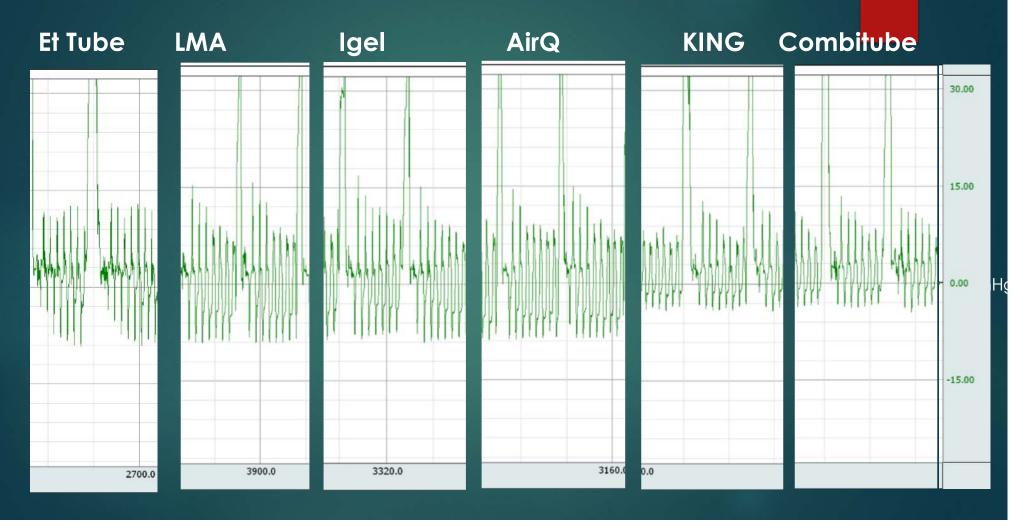

Super Info about SupraGlottics

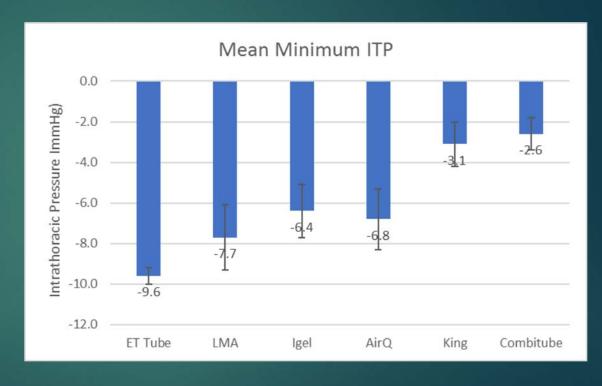
JOE HOLLEY
SCOTT YOUNGQUIST
JON JUI

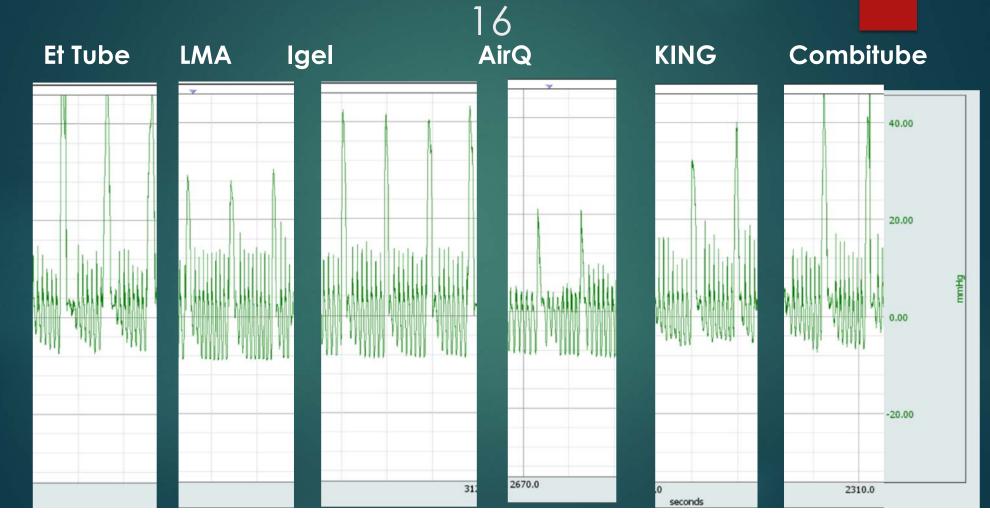

Effect of the ITD on Intracranial and Cerebral Perfusion Pressures


Automated High Quality CPR (LUCAS 2) with/without ITD 16

LUCAS without ITD

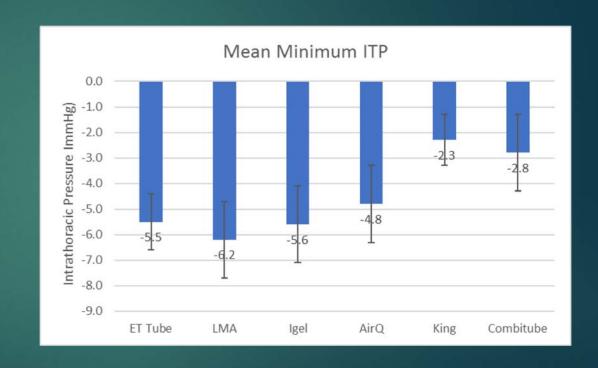
LUCAS with ITD 16

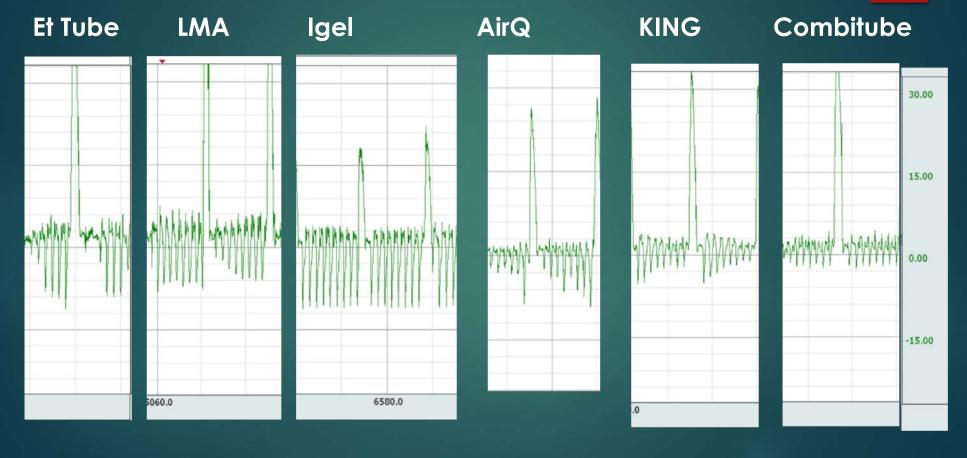

Automated CPR (LUCAS 2) with ITD 16


Measured Cadaver Data (n=7)

Automated CPR (LUCAS 2 with ITD 16)

	Mean Minimum ITP	Range
ET Tube	-9.6	0.4
LMA	-7.7	1.6
Igel	-6.4	1.3
AirQ	-6.8	1.5
King	-3.1	1.1
Combitube	-2.6	0.8


Active Compression-Decompression CPR with ITD


Measured Cadaver Data (n=7)

Active Compression-Decompression CPR with ITD 16

	Mean Minimum ITP	Range
ET Tube	-5.5	1.1
LMA	-6.2	1.5
Igel	-5.6	1.5
AirQ	-4.8	1.5


Active Compression-Decompression CPR with ITD 16 and Head Up

Measured Cadaver Data (n=7)

Active Compression-Decompression CPR with ITD 16 and Head Up

	Mean Minimum ITP	Range
ET Tuba		1 [
ET Tube	-5.6	1.5
LMA	-5.7	1.0
Igel	-4.9	1.5
AirQ	-5.5	0.9
King	-2.4	0.9
Combitube	-1.9	0.6


Take Home Message

Be careful how you secure the airway device

Cervical collars can effect flow

Choice of SGA impacts CPR Adjuncts/Enhancements

Choice of SGA impacts cerebral blood flow

Multnomah County EMS

- 2018 MCEMS providers dispatched to 100,000 calls
- · Advanced Airway approximately 500 patients per year
- MCEMS providers have drug facilitated airway capacity
- Advanced Airway training approximately 1/3 of all our training time and twice per year at minimum

Multnomah County EMS

- •2015, MCEMS transitioned from King Airway to i-gel airway device
- Pediatric Advanced Airway approximately 20 to 25 patients per year
- •Adult i-gel success rate in 2017-2018 is approximately 94%

What is our 2017 I-Gel success rate?

MCEMS i-gel: January 1 to August 31, 2017

	Number	Percent
Successful	115	94%
Unsuccessful	7	6%
Total	122	100%

MCEMS 2017 i-gel Pediatric

Age	Success	Unsuccess ful	Percent
< 1 years	3	1	75%
3 years	2	0	100%
Overall	5	1	83%

What is our I-Gel success rate?

MCEMS i-gel: January 1 to August 31, 2018

· ·	Number	Percent
Successful	111	94%
Unsuccessful	7	6 %
Total	118	100%

MCEMS i-gel Pediatric 2018

Age	Success	Unsuccess ful	Percent
< 1 years	3	0	100%
1-5 years	1	0	100%
Overall	4	0	100%

Pediatric I-Gel

MCEMS Pediatric Guide

Multnomah County, Clackamas County, Washington County EMERGENCY MEDICAL SERVICES

PEDIATRIC GUIDE

Length-Based System

Measure from top of head to bottom of feet (inches) If weight available, go directly to appropriate page

Special acknowledgement to Dr. Craig Warden, Dr. Mo Daya and Tualatin Valley Fire & Rescue for their original design and concept. Additional thanks to Dr. Jon Jul; the Multnomah County EMS office, American Medical Response and Portland Fire & Rescue for revisions and production.

EDITION 8
January 2018

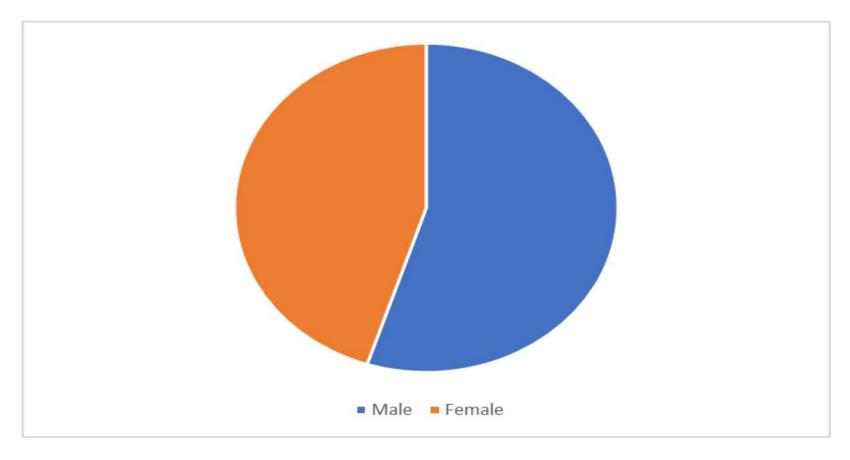
3–4	.9 lbs	;		1,3	<u>-2.</u>	4 kç	JS		16–17.5"
VITAL SIG	SNS: H	leart R	ate	Respi	rations	S	SBP		MAP
	1-	40 bpm		40 – 60) min		50 – 6	0 mmHg	45 – 50 mmHg
INTUBAT	ON E	T Size		ET De	pth		Lary	ngoscope Blade	•
	C	Cuffed 2	.5 mm	7.5 – 9	.0 cm		Straig	jht 0	
I-GEL AIF	RWAY			KING AIRWAY		′ c	Color/Size I		Inflation Volume
Pink		1	.0			n	n/a n/a		
IO / NG / S	SUCTION		IO Needl	e	9	Suction	Cathet	er	
			EZ-IO 25 r	25 mm (blue) 6 French					
DEFIBRILLATION PEDIATRIC PADS JOULES SHOCK AT									
Defibrillatio	n					~		4 J/kg	8 Joules
Cardioversion—First Shock/Subsequent Shocks			hocks		~		4 J/kg	8 Joules	

♥ - CARDIAC MEDICATIONS - ♥					
DOSAGE mcg/mg/g/mEq co					
Amiodarone (VF/Pulseless VT)	5 mg/kg	10 mg	0.2 cc		
Amiodarone-2nd Dose or VT w/pulses (IV)	2.5 mg/kg	5 mg	0.1 cc		
Atropine	Contra	indicated in neonate:	S		
Epinephrine 1:10,000 (IV)	0.01 mg/kg	0.02 mg	0.2 cc		
Lidocaine (IV)	1.5 mg/kg	3 mg	0.15 cc		
Magnesium Sulfate (IV)	25 mg/kg, 1-2 min	50 mg	0.1 cc		
Norepinephrine drip (MUST use IV pump)	0.1 mcg/kg/min	0.2 mcg/min			

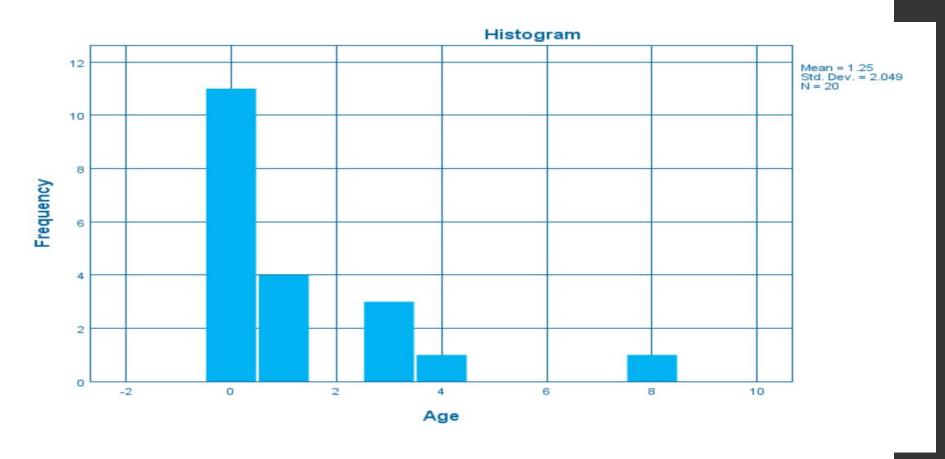
MEDICATIONS					
	DOSAGE	mcg/mg/g/mEq	CC		
Adenosine—First Dose (IV)	0.1 mg/kg	0.2 mg	0.07 cc		
Adenosine—2nd/3rd Dose (IV)	0.2 mg/kg	0.4 mg	0.13 cc		
Calcium Gluconate	0.5 cc/kg		1 cc		
D10% (1 part D50 to 4 parts NS) (IV, PO)	5 mL/kg	1 grams	10 cc		
Dexamethasone (IV, IM, PO)	0.6 mg/kg	1.2 mg	0.12 cc		
Diphenhydramine (Benadryl) (IV, IM)	1 mg/kg	2 mg	0.04 cc		
Epinephrine 1:1,000 (Anaphylaxis—IM)	0.01 mg/kg	0.02 mg	0.02 cc		
Epinephrine 1:10,000 (Anaphylaxis—IV q 3-5 min. Total MAX 0.5 mg)	0.01 mg/kg	0.02 mg	0.2 cc		
Fentanyl (IV, IN, and IM)	1 mcg/kg	2 mcg	0.04 cc		
Fentanyl intervals: IV, IO, or IN: repeat q 3-5 min. IM:	repeat q 15 min. MAX tot	al for all routes 4 micro	grams/kg.		
Fluid Challenge (IV)	10 cc/kg		20 cc		
Glucagon (IM)	0.02 mg/kg	0.04 mg	0.04 cc		
Naloxone (Narcan [®])	Contraindicated in neonates				
Ondansetron (Zofran®) (IV, IM)	Contact OLMC (except if in c-spine or chemo) 0.1cc				
Sodium Bicarbonate (IV)	Contact OLMC		2 cc		
Versed® (IV)	0.1 mg/kg	0.2 mg	0.04 cc		
Versed® (IM, IN)	0.3 mg/kg	0.6 mg	0.12 cc		

Doses have been rounded for ease of administration

i-gel Sizes


iGel

i-gel size	Patient size	Patient weight guidance (kg)
1	Neonate	2-5
1.5	Infant	5-12
2	Small paediatric	10-25
2.5	Large paediatric	25-35
3	Small adult	30-60
4	Medium adult	50-90
5	Large adult+	90+


MCEMS IGEL Experience

- Dates: January 1, 2015 to December 31, 2018
- Pediatrics : Age 12 year or less
- Data Source: AMR MEDS
- I-gel as primary or secondary device
- Success Definition
 - End Tidal CO2 must be present and consistent
 - If ETCO2 not document, hospital records reviewed

Results: N= 20 Patients Sex

MCEMS Pediatric IGEL : Age

MCEMS Pediatric IGEL: Success

	Number	Percent
Successful	17	85%
Unsuccessful	3	15%
Total	20	100%

MCEMS Pediatric IGEL Success by Age

	Successful	Unsuccessful	Total
Less than 1 year	10	1	11
1	4		4
3	2	1	3
4	1		1
8		1	1
Total	17	3	20

Conclusions

- Pediatric IGEL is a viable alternative as both primary airway and rescue device
- Success rate in pediatrics is comparable to the success rate in the adult population
- We did not observe complications in this small cohort from the IGEL device.

Conclusions: Lessons Learned

- •EMS provider familiarity and "comfort" with the device is critical for successful deployment; specifically, we deployed the IGEL in both Adults and Pediatrics
- "System competency" has taken approximately 2-3 years

Conclusions: Lessons Learned

- •Pediatric Airway Training is mandatory at a minimum of annually
- •PALS every two years is insufficient to maintain competency in pediatric emergencies

Conclusions: Lessons Learned

- Failure to place the IGEL device can be attributed to:
- •1. Improper technique of placement (i.e. tongue prevents adequate placement)
- •2. Improper size
- •3. Inadequate mouth opening

The END

Questions?