Existential Fun Park...

Why Are You Here??

2013 Ways to Push the Resuscitation Envelope: **Go with the Flow** - The Sweet Spot, "Snappy" Concepts & Stutter CPR

Paul E. Pepe, M.D., M.P.H.

Professor of Medicine, Surgery, Pediatrics, Public Health and Riggs Family Chair in Emergency Medicine

Univ. of Texas Southwestern Medical Center; and Parkland Memorial Hospital; Dallas, USA

Chest Compressions Critical to Resuscitation...

"Hands-Off" Interval

Yu et al. Circulation 2002; 106:368-72

ORIGINAL CONTRIBUTION

Minimally Interrupted Cardiac Resuscitation by Emergency Medical Services for Out-of-Hospital Cardiac Arrest

Bentley J. Bobrow, MD							
Lani L. Clark, BS							
Gordon A. Ewy, MD							
Vatsal Chikani, MPH							
Arthur B. Sanders, MD							
DI CONTRACTOR							

Context Out-of-hospital cardiac arrest is a major public health problem.

Objective To investigate whether the survival of patients with out-of-hospital car diac arrest would improve with minimally interrupted cardiac resuscitation (MICR), a alternate emergency medical services (EMS) protocol.

Design, Setting, and Patients A prospective study of survival-to-hospital dis charge between January 1, 2005, and November 22, 2007. Patients with out-of

Chest Compression Rates During Cardiopulmonary Resuscitation Are Suboptimal

A Prospective Study During In-Hospital Cardiac Arrest

Benjamin S. Abella, MD, MPhil; Nathan Sandbo, MD; Peter Vassilatos, MS; Jason P. Alvarado, BA; Nicholas O'Hearn, RN, MSN; Herbert N. Wigder, MD; Paul Hoffman, CRT; Kathleen Tynus, MD;

nonsurvivors, 90 ± 17 and 79 ± 18 cpm, respectively; P=0.0033).

Conclusions—In-hospital chest compression rates were below published resuscitation recommendations, and suboptimal compression rates in our study correlated with poor return of spontaneous circulation. CPR quality is likely a critical determinant of survival after cardiac arrest, suggesting the need for routine measurement, monitoring, and feedback systems during actual resuscitation. (*Circulation.* 2005;111:428-434.)

Key Words: cardiopulmonary resuscitation
death, sudden
heart arrest

Key Finding of Early Studies

Figure 3. Smoothing spline representing the incremental probability of survival corresponding to a linear increase in chest compression fraction.

Chest Compression Fraction Determines Survival in Patients With Out-of-Hospital Ventricular Fibrillation

i.e., The More Time Medics Spend Doing Chest Compressions, Then the Better the SURVIVAL RATE !!

NIH ROC: Besides Salaries for Expert Personnel to Capture the Data & Outcomes ...

DFR Acquired Monitoring Equipment: for example, the ability to Capture Sec. to Sec. Performance of CPR Recorded and Measured on Computers!

CPR 2006

CPR Prompt. Compr. Prompt. 0 min 1 min Compr. Compr. Vent. Vent. Ratio, CPŔ Ratio, Compr. Rate /min Rate /min Ratio. % Ratio, % % % 3:00 15 15 163 22 12 ---------1 1 1 4:00 7 ---------------------5:00 ------------------------6:00 59 56 3 145 73 3 -----7:00 27 21 167 26 ----------8:00 63 63 119 60 ------------9:00 80 123 62 60 ------------10:00 33 20 130 21 -----------11:00 9 9 92 7 -----------12:00 -4 4 4 ------------13:00 93 69 77 108 ----------14:00 87 82 108 81 -----------83 78 107 69 -----------93 88 100 74 ----------100 96 107 94 ------------18:00 74 62 107 58 ------___ --94 84 106 83 -----------

CPR QUIK-VIEW

Interval Statistics

CPR 2009

CPR QUIK-VIEW

Interval Statistics

	0 min 1 min Power On	CPR Ratio. %	Prompt. CPR Ratio, %	Compr. Ratio. %	Prompt. Compr. Ratio, %	Compr. Rate	Compr. /min	Vent. Rate	Vent. /min
-1:00					-	-			
0:00		86		86	-	120	101		
1:00		100		100	-	118	112		
2:00		100		100	-	117	111		
3:00		100		93		122	104		
4:00		100		96	-	127	113		
5:00		100		100	-	138	130		
6:00		100		100	-	138	133		
7:00		100		100	-	108	93		
8:00		100		92	-	110	92		
9:00		100		100	-	143	136		
10:00		100		100	-	138	124		
11:00		100		100	-	147	141		
12:00		94		94	-	146	118		

Following Feedback, Re-Training and... More Re-Training:

2006

Grants help make Dallas County one of best places to suffer cardiac arrest 10:24 PM CST on Friday, February 26, 2010

By JASON ROBERSON / The Dallas Morning News

Steven Shelley is grateful for a federal grant that helped Dallas County medics and firefighters save more cardiac arrest patients last year and send them back to work

Public Health Cardiac care gets a jolt

County goes from one of the worst to one of the best places for a heart to stop

Steven Shelley is grateful for a federal grant that helped Dallas County medics and firefighters save more cardiac arrest patients last year and send them back to work. After finishing a four-hour shift of moving

Impact on Dallas Area Outcomes Survival to Hospital Discharge

Between 2006 and 2011

Dallas Irving Mesquite Carrollton 157%
57%
100%
376%

Push Hard – Push Faster !!! A Message from our Sponsors...

Maybe Not !

Resuscitation Outcomes Consortium Data "The Sweet Spot of CPR" Compression Rates Between 100 -120 /min Independently Associated with Increased

Survival After Out-of-Hospital Cardiac Arrest

Cubic Spline of Survival vs Chest Compression Rate 95% confidence intervals as dashed lines

ITD Study

Very Interesting Results .. No Advantage In Survival Chances from the ITD Itself

...But Another Study (ITD combined with The ACD Pump) was a positive outcome !!

Impedance Threshold Device "ITD"

Maybe Not Negatove Study

Active Compression--Decompression

ACD Device

Improved Long-Term Survival with Favorable Neurologic Outcome

Resuscitation Outcomes Consortium Data "The Sweet Spot of CPR" Compression Rates Between 100 -120 /min Independently Associated with Increased

Survival After Out-of-Hospital Cardiac Arrest

Cubic Spline of Survival vs Chest Compression Rate 95% confidence intervals as dashed lines

The Patient Has a Fractured Fibula.... ...on a Mild Sedative.... Can Go Home Tomorrow ..

Some Daring New Concepts

Vasodilators in Cardiac Arrest

Pushing Another Envelope in Resuscitation Science

Coronary Perfusion Pressure

"The Key Factor" in Achieving ROSC

(Return of Spontaneous Circulation)

Nitroprusside ??

for Cardiac Arrest ???

Sodium Nitroprusside (SNP)

 SNP Breaks Down in the Circulation and Releases Nitric Oxide Nitric Oxide Decreases **Both Preload and Afterload** So Giving Such a Vasodilator **During CPR is Counter-Intuitive!**

Until You Think of CPR in Terms of Better Coronary Flow – Not Better Coronary Pressure

ACD / ITD CPR

Increasing Flow !!

Experimental Protocol

Schultz et al. Resuscitation 2011;82(Suppl 2):S35-40

SNPeCPR Trial

ISCHEMIC POST-CONDITIONING

Can We Make SNPeCPR Even Better?

Background

 During Organ Transplant, Blood Flow is "Trickled"/Stuttered Back In to Prevent Reperfusion Injury
 Might a Similar Strategy Work for Hypoxic Organs in Cardiac Arrest?

Ischemic Post-Conditioning

Would a More Controlled Reperfusion Better Protect the Heart & Brain after Cardiac Arrest with a Protocol That Initially "Stutters" CPR ?

•<u>Hypothesis:</u>

-3 min of 20 sec On --- 20 sec Off CPR (called "stutter" CPR)

-Followed by "Enhanced CPR" (ACD-ITD)

-Along With Non-traditional Drugs (e.g.Adenosine)

Experimental Protocol in Swine

- Prolonged VF Downtime (15 min)
- Randomized as Follows:
 - Group 1 (n=8); S-CPR (Standard CPR)
 - Group 2 (n=8); SNPeCPR
 - Group 3 (n=8); SNPeCPR + High Dose Adenosine

Group 4 (n=8); SNPeCPR + High Dose Adenosine
 + Controlled Pauses (CP)

*All Got Epinephrine as Needed and Defibrillation Attempt

Survival at 24 Hours ...

Group 1: Std-CPR

- 2/8 survived

Group 2: SNPeCPR alone

- 7/8 Survived
- None w/ good neuro @ 24 hrs: 3 w/ Good Neuro @ 24 hours:

Group 3: SNPeCPR & Adenosine

- 8/8 survived
- 4 w/ good neuro @ 24 hours

Group 4: SNPeCPR, Adenosine and STUTTER CPR

- 8/8 survived
- 7 w/ good neuro @ 24 hours:

Conclusions

 Targeting Flow – Not Pressure – … In a More Controlled Manner … … May Improve Outcomes

Stay Tuned!

OVERALL CONCLUSIONS...

On the Road to the 22nd Century...

We'll Make Life Better for Future Generations

People who find you on Facebook

