

Resuscitation Duration How Long Should We Attempt Resuscitation and Expect Neurologically Intact Survival?

www.wakegov.com

William F. Buckley and Art Buchwald

"Dear Bill, I don't like to brag, but I have just received a PLATINUM card from Hertz. There is no where you can go after platinum except may plutonium. I'm really afraid to carry the card in my pocket because in case of a stickup it would be the first one the thieves would go for.

William F. Buckley and Art Buchwald

Rumor has it that the underworld will now kill for a Platinum card. You and I have both come a long way in the journalism profession, but I don't know how much higher you can go in life that to become the owner of a Platinum Hertz card.

William F. Buckley and Art Buchwald I would say we have achieved the American Dream." Sincerely, Art Buchwald Washington DC August 24, 1984

Delta Loyalty Program

Proposed Delta Loyalty Program

CARBON FIBER MEDALLION®

EVERY CABIN IS YOUR CABIN

How I Feel Today

40 is the new 20

Public Health Announcement In wine there is wisdom

In beer there is strength

In water there are bacteria

The Plan

History of project
Question to be answered
SAS role in helping to answer the question Results
Implications of Results

FUTILITY

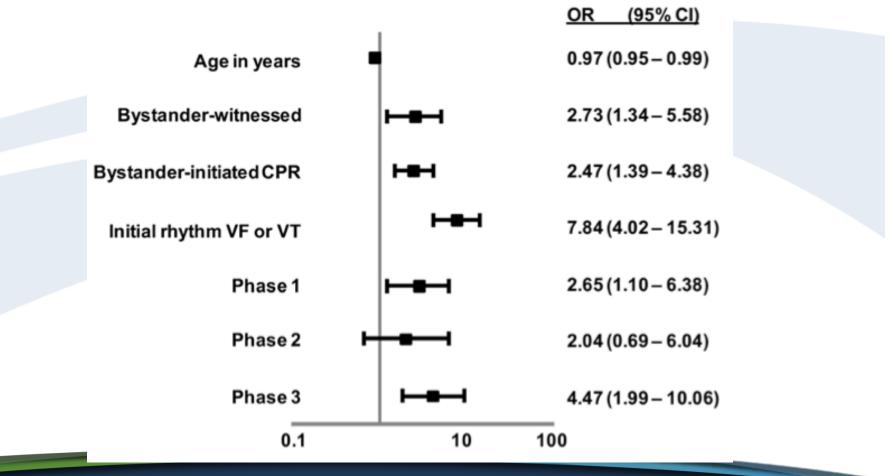
THEY SAY THAT JUST ONE PERSON CAN MAKE A BIG DIFFERENCE. SOMETIMES THEY'RE WRONG.

ARTICLE IN PRESS

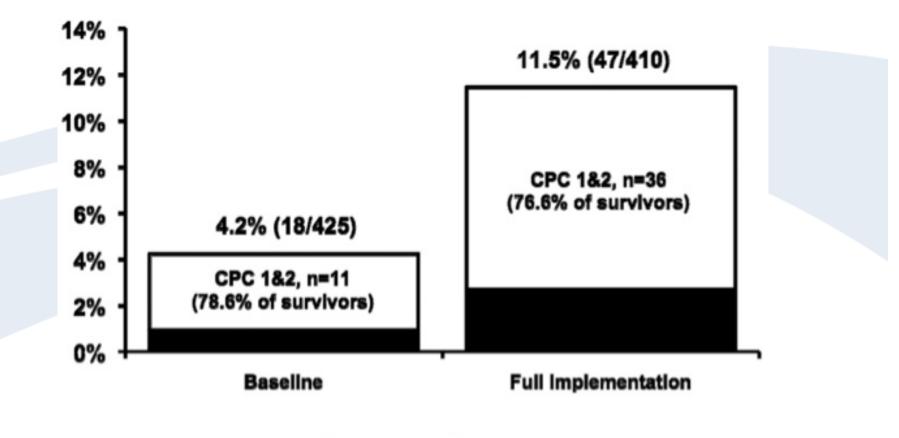
EMERGENCY MEDICAL SERVICES/ORIGINAL RESEARCH

Improved Out-of-Hospital Cardiac Arrest Survival After the Sequential Implementation of 2005 AHA Guidelines for Compressions, Ventilations, and Induced Hypothermia: The Wake County Experience

Hinchey et al. Annals of EM 2010;56:348-57


Community-wide approach to improving resuscitation outcomes Observational cohort with prospective data collection and observation: •Continuous compressions •Controlled ventilations/working codes "onscene"

Therapeutic temperature management



	Baseline	Phase 1	Phase 2	Phase 3	Absolute Increase*
Characteristics	(N=425)	(N=369)	(N=161)	(N=410)	% (95% CI)
Witnessed arrest					
Bystander witnessed	n=154	n=134	n=61	n=136	
	8 (5.2)	14 (10.4)	8 (13.1)	31 (22.8)	17.6 (9.7 to 25.5)
EMS witnessed	n=51	n=50	n=12	n=47	
	6 (11.8)	6 (12.0)	1 (8.3)	10 (21.3)	9.5 (-5.2 to 24.2)
Initial CPR					
Bystander	n=162	n=117	n=63	n=142	
	8 (4.9)	13 (11.1)	6 (9.5)	21 (14.8)	9.9 (3.2 to 16.6)
First responder (firefighter)	n=143	n=165	n=77	n=192	
	2 (1.4)	6 (3.6)	5 (6.5)	14 (7.3)	5.9 (1.7 to 10.1)
EMS response intervals					
Defib to scene in >4 min	n=356	n=287	n=121	n=330	
	16 (4.5)	16 (5.6)	9 (7.4)	35 (10.6)	6.1 (2.1 to 10.1)
Defib to scene in ≤4 min	n=42	n=70	n=39	n=73	
	1 (2.4)	9 (12.9)	4 (10.3)	12 (16.4)	11.6 (0.9 to 22.3)
Initial cardiac rhythm					
Asystole	n=200	n=178	n=81	n=199	
	3 (1.5)	2 (1.1)	1 (1.2)	4 (2.0)	0.5 (-2.1 to 3.1)
PEA	n=100	n=89	n=38	n=107	
	1 (1.0)	3 (3.4)	0 (0)	8 (7.5)	5.5 (-0.2 to 11.2)
VF or VT	n=124	n=101	n=42	n=97	
	14 (11.3)	22 (21.8)	12 (28.6)	35 (36.1)	24.8 (13.7 to 35.9)
Witnessed VF					
All-witnessed VF	n=80	n=71	n=26	n=76	
	11 (13.8)	17 (23.9)	9 (34.6)	31 (40.8)	27.0 (13.6 to 40.4)
Bystander-witnessed VF	n=61	n=56	n=24	n=66	
	5 (8.2)	12 (21.4)	8 (33.3)	23 (34.8)	26.6 (13.2 to 40.0)
EMS-witnessed VF	n=19	n=15	n=2	n=10	
	6 (31.6)	5 (33.3)	1 (50.0)	8 (80.0)	48.4 (16.0 to 80.8)

CPC 1&2 CPC 3&4

The combination of compressions, controlled ventilations, working arrests in the field, and hypothermia increased survival by 7% actually and 200% relatively This is an increase of 3 lives saved per 100,000 population per year, or 30 additional lives saved annually in Wake County

Wake EMS CARES: Jan 1 – Dec 31, 2013

Data Element	Wake County	NC	Nation
Total Number	463	4222	31127
Pronounced In Field	239 (52%, 47-56%)	1558 (37%, 35-38%)	8567 (28%, 27-28%)
Pronounced in ED	50 (11%, 8-14%)	711 (17%, 16-18%)	5215 (17%, 16-17%)
Ongoing Resus in ED	174 (38%, 33-42%)	1953 (46%, 45-48%)	17345 (56%, 55-56%)
Overall Survival to Admit	144 (31%, 27-35%)	1138 (27%, 26-28%)	8558 (28%, 27-28%)
Overall Survival to DC	69 (15%, 12-18%)	452 (11%, 10-12%)	3315 (11%, 10-11%)
Neuro Intact Survival	63 (14%, 11-17%)	398 (9%, 9-10%)	2588 (8%, 8-9%)
Utstein	57 (46%, 40-66%)	617 (32%, 28-36%)	4281 (33 %, 32-34%)
Utstein with Bystander	32 (53%, 36-70%)	356 (35%, 30-40%)	2442 (38%, 36-40%)

Now What? When Should We Stop?

www.wakegov.com

I AM NOT AN ADVOCATE FOR FREQUENT CHANGES IN LAWS AND CONSTITUTIONS. BUT LAWS AND INSTITUTIONS MUST GO HAND IN HAND WITH THE PROGRESS OF THE HUMAN MIND. AS THAT BECOMES MORE DEVELOPED, MORE ENLIGHTENED, AS NEW DISCOVERIES ARE MADE, NEW TRUTHS DISCOVERED AND MANNERS AND OPINIONS CHANGE, WITH THE CHANGE OF CIRCUMSTANCES. INSTITUTIONS MUST ADVANCE ALSO TO KEEP PACE WITH THE TIMES. WE MIGHT AS WELL REQUIRE A MAN TO WEAR STILL THE COAT WHICH FITTED HIM WHEN A BOY AS CIVILIZED SOCIETY TO REMAIN EVER UNDER THE REGIMEN OF THEIR BARBAROUS ANCESTORS.

Concepts in Emergency and Critical Care

Roger C. Bone, MD, Section Editor

Distinct Criteria for Termination of Resuscitation in the Out-of-Hospital Setting

Marni J. Bonnin, MD; Paul E. Pepe, MD; Kay T. Kimball, PhD; Peter S. Clark, Jr, EMT

JAMA 1993;270:1457-62

Table 3.—Criteria for Termination of Resuscitation Efforts at the Scene Following Unmonitored, Out-of-Hospital, Adult, Primary Cardiac Arrest

- Adult cardiopulmonary arrest (not associated with trauma, body temperature aberration, respiratory etiology, or drug overdose)
- Standard advanced cardiac life support⁵ for 25 min
- No restoration of spontaneous circulation (spontaneous pulse rate of >60 beats per min for at least one 5-min period)
- Absence of persistently recurring or refractory ventricular fibrillation/tachycardia or any continued neurological activity (eg, spontaneous respiration, eye opening, or motor response)

guideline.¹¹ However, while this study helps to validate the practice (of terminating resuscitations at the scene) as a reasonable and medically acceptable option for EMS systems today, it must also be recognized that these conclusions remain valid only as long as new or unusual treatment advances have not become available. There is no more worrisome a place for self-fulfilling prophecies than in resuscitation practices.

RESUSCITATION IN THE OUT-OF-HOSPITAL SETTING:

MEDICAL FUTILITY CRITERIA FOR ON-SCENE PRONOUNCEMENT OF DEATH

Paul E. Pepe, MD, MPH, Robert A. Swor, DO, Joseph P. Ornato, MD, Edward M. Racht, MD, Donald M. Blanton, MD, John K. Griswell, MD, Thomas Blackwell, MD, James Dunford, MD

Abstract

The complete and irreversible cessation of life is often difficult to determine with complete confidence in the dynamic environment of out-of-hospital emergency care. As a result, resuscimended procedures for on-scene or prehospital pronouncement of death (termination of resuscitation). In cases of *nontraumatic* cardiac arrest, few unassailable criteria, other than certain physical signs of irreversible tissue death; field pronouncement; pronouncement of death; futility; resuscitation; cardiac arrest; trauma.

PREHOSPITAL EMERGENCY CARE 2001;5:79–87

TABLE 3. Cardiac Resuscitation for Adults and Pediatric Patients: Nontraumatic Arrest

Start?	Attempt to resuscitate all patients <i>Exceptions:</i> cases of rigor mortis, dependent lividity, or "do- not-attempt-resuscitation" orders
Duration?	Terminate 25 minutes after starting advanced cardiac life support if return of pulses is not achieved (30 minutes in monitored cases) <i>Exceptions:</i> Hypothermia, persistent ventricular fibrillation
Where?	 On scene (directly at the scene of the resuscitation effort) <i>Exceptions:</i> 1. refractory or persistently-recurring ventricular fibrillation, especially with spontaneous eye opening and other neurological signs 2. child involved* 3. family non-amenable (or other environmental concerns)*

*Social/public service reason (not medical futility).

Prehospital Resuscitation The Good, the Bad, and the Futile

Termination Rules

Many different studies have looked at this question NAEMSP official position paper revision is in press Brief review follows Take home: we have sufficient data to adopt termination of resuscitation rules

CARES Registry Study

BLS Rule Not witnessed by EMS Non-shockable rhythm No ROSC

ALS Rule Not witnessed by EMS Non-shockable rhythm No ROSC Not by-stander witnessed No bystander CPR

CARES Registry Study

BLS Rule PPV 99.8% (99.6-99.9) ALS Rule PPV 100% (99.7-100)

NPV 13.3% (12.1-14.6)

NPV 9.1% (8.3-10.0)

History of the Project

- Direct Clinical Question:
- "How Long Should We Do CPR On-Scene and Still Have Reasonable Expectation of Neurologically Intact Survival?"
- Historical literature implies no more than
 20 to 25 minutes
- We were seeing clinical indicators of viability well beyond 25 minutes
- We had data SAS had analysts

History of the Project

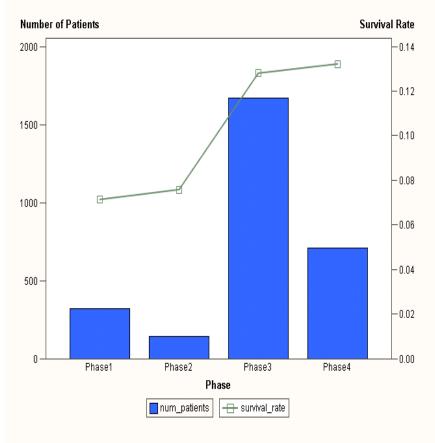
- How did SAS help?
- Multiple factors are known to impact survival
 - •Age
 - Initial Cardiac Rhythm
 - Witnessed status
- Other factors seem to impact survival
 - Presence of continuous compressions
 - Controlled ventilations
 - Presence of induced hypothermia
- SAS has the ability to control for these variables

WAKE COUNTY EMS MODELING DATASET

Modeling Dataset - 2906 Observations

- Observations excluded from the Model Dataset
 - Trauma
 - Age < 16
 - Resuscitation not Attempted
 - EMS Witnessed
 - Code Not in our Control
- Variables created to provide ability to subset model
 - Treatment Phases
 - Utstein survival
 - Accuracy of time data for Length of Resuscitation

WAKE COUNTY EM\$ MODELING DATASET


Treatment Phases •Phase 1: Continuous CPR •Phase 2: ITD •Phase 3: Hypothermia Post-ROSC •Phase 4: Hypothermia Pre-ROSC

April 15, 2005 - April 17, 2006 April 18, 2006 - Oct 4, 2006 Oct 5, 2006 - April 14, 2011 April 15, 2011 - Dec 31, 2012

Phase	Frequency	Percent		Cumulative Percent
1	323	11.11	323	11.11
2	146	5.02	469	16.14
3	1686	58.02	2155	74.16
4	751	25.84	2906	100.00

WAKE COUNTY EM\$ DATA TREND BY PHASE (MODEL DATASET)

Survival Rate by Phase

Generated by the SAS System ('PREApp01', Linux) on May 17, 2013 at 6:03:07 PM

Table of target_survived by Phase							
		Phase					
		1	2	3	4	Tota	
target_survived							
0	Frequency	300	135	1471	637	2543	
U	Col Pct	92.88	92.47	87.25	84.82		
4	Frequency	23	11	215	114	363	
	Col Pct	7.12	7.53	12.75	15.18		
Total	Frequency	323	146	1686	751	2908	

Statistic	DF	Value	Prob
Chi-Square	3	16.8754	0.0007
Likelihood Ratio Chi-Square	3	18.4333	0.0004
Mantel-Haenszel Chi-Square	1	16.1265	<.0001
Phi Coefficient		0.0762	
Contingency Coefficient		0.0760	
Cramer's V		0.0762	

WAKE COUNTY EM\$ DATA TREND BY PHASE (MODEL DATASET)

Number of Patients Rate CPC 1 or 2 by Phase 2000 --0.12 -0.10 1500--0.08 1000--0.06 -0.04 500 --0.02 -0.00 0. Phase2 Phase3 Phase1 Phase4 Phase - good_cpc_rate num_patients

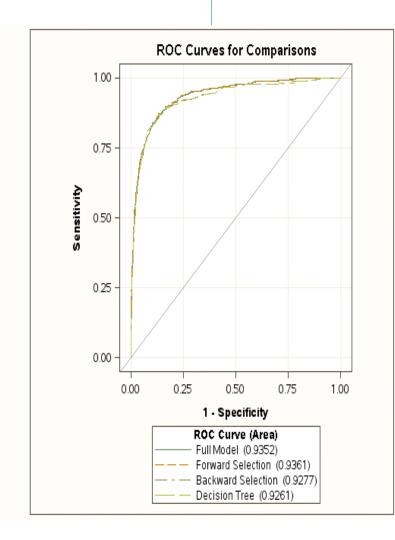

Generated by the SAS System ('PREApp01', Linux) on May 17, 2013 at 6:05:21 PM

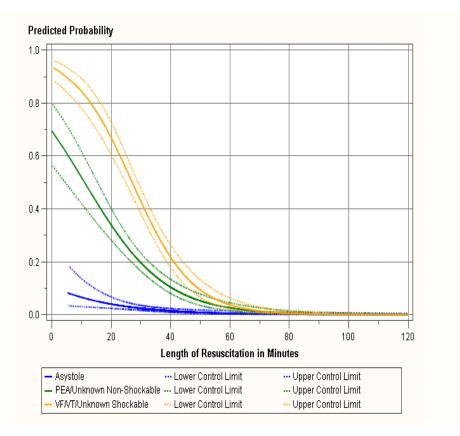
Table of target_cpc by Phase								
		Phase						
		1	1 2 3 4 1					
target_cpc								
Ω	Frequency	308	137	1509	652	2606		
U	Col Pct	95.36	93.84	89.50	86.82			
4	Frequency	15	9	177	99	300		
1	Col Pct	4.64	6.16	10.50	13.18			
Total	Frequency	323	146	1686	751	2906		

Statistic	DF	Value	Prob
Chi-Square	3	20.6685	0.0001
Likelihood Ratio Chi-Square	3	23.2124	<.0001
Mantel-Haenszel Chi-Square	1	20.3576	<.0001
Phi Coefficient		0.0843	
Contingency Coefficient		0.0840	
Cramer's V		0.0843	

Rate CPC 1 or 2 by Phase

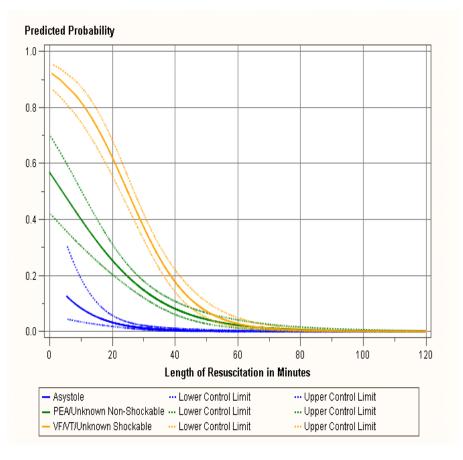
WAKE COUNTY EMS LOGISTIC REGRESSION RESULTS

ROC Association Statistics								
		Mann-Whitney						
		Standard	95% N	Wald	Somers' D			
ROC Model	Area	Error	Confiden	ce Limits	(Gini)	Gamma	Tau-	
Full Model	0.9352	0.00712	0.9213	0.9492	0.8704	0.8704	0.186	
Forward Selection	0.9361	0.00713	0.9221	0.9501	0.8722	0.8722	0.187.	
Backward Selection	0.9277	0.00831	0.9114	0.9439	0.8553	0.8553	0.183	
Decision Tree	0.9261	0.00835	0.9097	0.9424	0.8521	0.8521	0.182	


ROC Contrast Test Results						
Contrast DF Chi-Square Pr > ChiSq						
Overlay of ROC Curves	3	17.5447	0.0005			

ROC Contrast E	ROC Contrast Estimation and Testing Results by Row									
		Standard	95% Wald							
Contrast	Estimate	Error	Confiden	ce Limits	Chi-Square	Pr > ChiSq				
Full Model - Forward Selection	-0.00089	0.000602	-0.00207	0.000293	2.1685	0.1409				
Full Model - Backward Selection	0.00757	0.00260	0.00246	0.0127	8.4511	0.0036				
Full Model - Decision Tree	0.00917	0.00258	0.00412	0.0142	12.6516	0.0004				
Forward Selection - Backward Selection	0.00845	0.00241	0.00373	0.0132	12.3250	0.0004				
Forward Selection - Decision Tree	0.0101	0.00255	0.00505	0.0151	15.5228	<.0001				
Backward Selection - Decision Tree	0.00160	0.000797	0.000039	0.00316	4.0346	0.0446				

WAKE COUNTY EMS PREDICTED SURVIVAL PROBABILITY BY INITIAL RHYTHM


LOR minutes	Asystole	VF/VT/ Shockable	PEA/ Non Shockable
10	0.0653	0.8445	0.5192
15	0.0502	0.7679	0.4267
20	0.0397	0.6685	0.3391
25	0.0308	0.5513	0.2613
30	0.0239	0.4281	0.1960
35	0.0185	0.3132	0.1439
40	0.0143	0.2175	0.1038
45	0.0110	0.1448	0.0740
50	0.0085	0.0935	0.0522
55	0.0066	0.0592	0.0366
60	0.0050	0.0369	0.0255

WAKE COUNTY EM\$ PREDICTED PROBABILITY CPC=1,2 BY INITIAL RHYTHM

LOR minutes	Asystole	VF/VT/ Shockable	PEA/ Non Shockable
10	0.0830	0.8188	0.4003
15	0.0503	0.7312	0.3225
20	0.0320	0.6207	0.2535
25	0.0196	0.4962	0.1950
30	0.0119	0.3722	0.1473
35	0.0072	0.2629	0.1097
40	0.0044	0.1767	0.0808
45	0.0027	0.1144	0.0590
50	0.0016	0.0721	0.0428
55	0.0010	0.0447	0.0309
60	0.0006	0.0274	0.0222

Wake County EMS 331 South McDowell St. Raleigh, NC 27601

WakeMed Health & Hospitals 3000 New Bern Ave. Raleigh, NC 27610

MW Bachman, MHS, EMT-P¹; JG Williams, MD, MPH^{1,2}; JB Myers, MD, MPH¹; K Hart, MA, MSA³; J Zalkin BS, EMT-P¹; VJ De Maio, MD, MSc²

¹Wake County, NC Emergency Medical Services; ² Clinical Research Unit, Emergency Services Institute, WakeMed Health and Hospitals; ³ SAS Institute, Cary, NC

Duration of Prehospital Resuscitation For Adult Out-of-Hospital Cardiac Arrest: Neurologically Intact Survival Approaches Overall Survival Despite Extended Efforts

OBJECTIVE

- Out-of-hospital cardiac arrest (OHCA) guidelines suggest resuscitation beyond 30 minutes may be futile.
- Few studies address neurologic outcome for survivors of extended duration OHCA.
- The duration of prehospital resuscitation (DOR) that yields a reasonable probability of neurologically intact survival (NIS) is unknown.
- We assess whether DOR affects NIS from OHCA.

METHODS

- We conducted a retrospective cohort study of all OHCA patients in our urban/suburban advanced life support EMS system (pop 950,000) from 2005–2012.
- Excluded were resuscitations not attempted, age < 16, trauma patients, and EMS-witnessed arrests.
- DOR was measured from time of dispatch to end of prehospital resuscitation, defined by first return of spontaneous circulation, en-route hospital, or death.
- Primary outcome was NIS, defined as cerebral performance category (CPC) 1 or 2 at hospital discharge.
- Multivariate logistic regression determined the odds ratios with 95% confidence intervals (CI) for both survival and NIS adjusted for DOR and factors determined to have a significant relationship with NIS at the univariate level.

Fig 1. All Survivors and Neurologically Intact Survivors by DOR, with 90th Percentile DOR (40 minutes) Highlighted

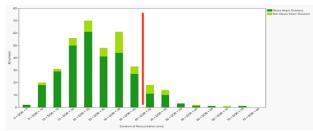
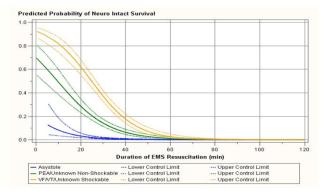
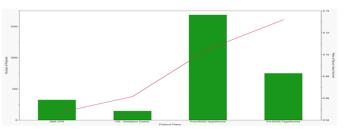
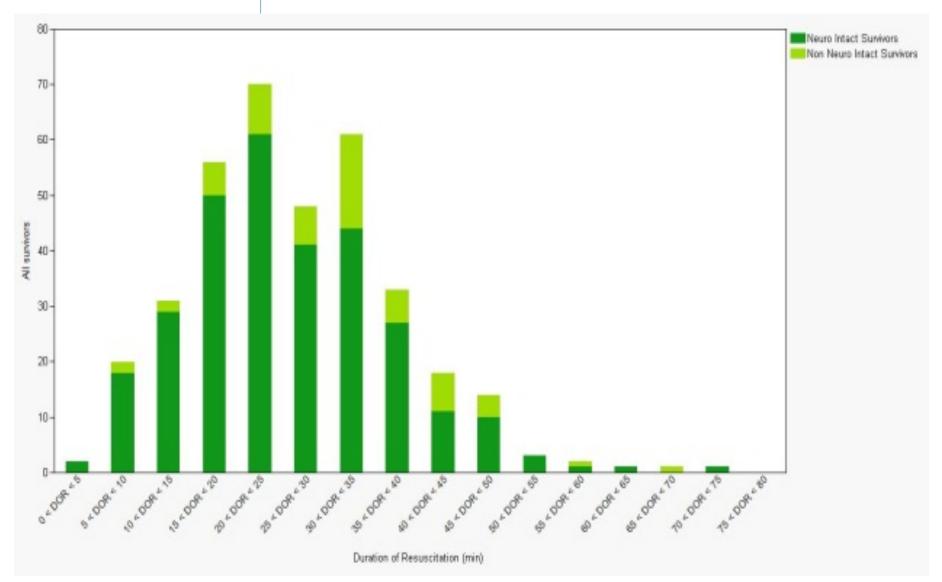




Fig 2. Predicted Probability of Survival with CPC 1 or 2 across Duration of Resuscitation, by Initial Rhythm (unadjusted)


RESULTS

- Of 2905 eligible OHCA, patients were: mean age 64.6 years (sd=17.0) male 60.1%, bystander witnessed 38.9% and had bystander CPR 37.2%. Overall, 362 survived (12.5%) and 300 had NIS (82.9% of survivors). Median defibrillator to scene was 7 minutes (IQR 5-9).
- Overall median DOR was 38 min (IQR 29-48), with median DOR for NIS of 24 min (IQR 18-32). The 90th percentile for NIS was 40 min. Beyond 40 min, 29/42 survivors (69%, 95% CI 54-81%) were neurologically intact. The longest resuscitation that achieved NIS was 73 min.
- Controlling for OHCA protocol changes over time ("protocol phase"), adjusted OR (95% CI) was 0.91 (0.90-0.92) for both survival and NIS. Other predictors of NIS across models were initial rhythm, age, bystander witness, therapeutic hypothermia, and absence of advanced airway.

CONCLUSIONS

 In a retrospective analysis of OHCA, DOR is associated with declining survival and NIS, with NIS approximating the overall survival curve. DOR was within 40 minutes from time of dispatch for 90% of NIS. A large number of patients survived neurologically intact with DORs greater than previous guidelines would suggest. Further study should examine factors predictive of NIS in longer resuscitations.

DURATION OF RESUSCITATION AND NIT VS NNIT SURVIVAL

Sas the Power 40

Conclusions

- 90 percent of neurologically intact survivors had ROSC at 40 minutes of resuscitation
- 29 of 42 survivors with resuscitation beyond 40 minutes had NIS (69%, (CI 54-81%)).
 - Presence of continuous compressions
 - Controlled ventilations/no hyperventilation
 - Presence of therapeutic temp management

Implications

What Does This Mean?

- If we had followed the 25 minute rule, ~ 100 neurologically-intact survivors would have had their resuscitative efforts abandoned prematurely
- Prolonged resuscitative efforts with continuous compressions, controlled ventilations, and hypothermia can reliably produce neurologically intact survivors
- The next steps are:
 - National scientific presentation in January, 2014
 - Manuscript preparation for peer review publication
 - Analysis of physiologic parameters to assist with prediction

Not Certain of This Yet How does EtCO2 predict outcomes?

Very preliminary data analysis with SAS

We are hoping there will be a number

End Tidal CO2

The information provided is currently in DRAFT format and is NOT a FINAL version Treatment Recommendation:

We suggest that $ETCO2 \ge 10 \text{ mmHg}$, measured after the intubation or at 20 min of resuscitation, may be a predictor of ROSC (weak recommendation, low quality of evidence).

We suggest that $ETCO2 \ge 10 \text{ mmHg}$, measured after the intubation, or $ETCO2 \ge 20 \text{ mmHg}$, measured at 20 min of resuscitation, may be a predictor of survival at discharge (weak recommendation, low quality of evidence).

Although certain ETCO2 cutoff values appear to be a strong predictor of ROSC and mortality, their utility in accurately predict outcome during CPR is not established. Thus, we recommend against using ETCO2 cutoff values alone as a mortality predictor or on the decision to stop the resuscitation attempt (weak recommendation, low quality of evidence).

How Do We Know When to Stop?

- Today:
- •Experienced provider assists, with first decision point at 25 minutes after first unit arrives
- EMS Physician is available to assist but phone call is not required
 We think it is a combination of rhythm and EtCO2

When The Patient is In *&*^ing Asystole

Specifically, SAS is analyzing:

- ~ 3400 attempted resuscitations
- For many (but not all) of these, we have:
- Standard Utstein Information, including CPC score for survivors
- Initial, highest, lowest, and recording nearest 30 minutes of EtCO2
- Currently, we are uploading continuous EtCO2 waveforms

What Do We Hope to Learn?

Does some combination of EtCO2 values provide actionable information regarding the decision to continue vs. terminate resuscitative efforts?

HINT: We think it is does

Discussion

ILCOR Timeline

Timeline

- Nov 2011
- Oct 2012
- 18-20 Apr 2013
- 21-22 Apr 2013
- 23 Apr 2013
- 29-30 Apr 2014
- 2-5 Feb 2015
- 15 Oct 2015

Ilcor meeting Orlando Ilcor meeting Vienna Spark Of Life Conference Melbourne Ilcor meeting Melbourne Utstein meeting Melbourne ILCOR meeting Canada International Consensus Conference ILCOR CoSTR and Guidelines published

Temperature Management

The information provided is currently in DRAFT format and is NOT a FINAL version

Treatment Recommendation:

We recommend targeted temperature management as opposed to no targeted temperature management for adults with OHCA with an initial shockable rhythm who remain unresponsive after ROSC (strong recommendation, low-quality evidence).

We suggest targeted temperature management as opposed to no targeted temperature management for adults with OHCA with an initial nonshockable rhythm (weak recommendation, very low-quality evidence) who remain unresponsive after ROSC.

We suggest targeted temperature management as opposed to no targeted temperature management for adults with IHCA (weak recommendation, very low-quality evidence) with any initial rhythm who remain unresponsive after ROSC.

We recommend selecting and maintaining a constant, target temperature between 32°C and 36°C for those patients in whom temperature control is used (strong recommendation, moderate-quality evidence). Whether certain subpopulations of cardiac arrest patients may benefit from lower (32-34oC) or higher (36oC) temperatures remains unknown, and further research may help elucidate this.

Mechanical Compressions

The information provided is currently in DRAFT format and is NOT a FINAL version Treatment Recommendation:

We suggest mechanical chest compression devices should not be considered the standard of care for cardiac arrest patients, but can be considered a reasonable alternative to high quality manual chest compressions in some settings (weak recommendation, moderate quality of evidence).

Values and Preferences Statement:

In making this recommendation we place value on data from a large, high-quality RCT demonstrating equivalence between high quality manual chest compressions and mechanical chest compressions. Local considerations such as relative costs and resource availability for maintenance of high quality manual chest compressions and mechanical chest compression device implementation should guide decisions around which mode of chest compression delivery is most appropriate. Also, there may be scenarios not directly addressed in the literature reviewed to support this treatment recommendation such as CPR in a moving ambulance, in the angiography suite or during preparation for ECLS, where mechanical chest compressions are more practical.

Prehospital Temperature Management

The information provided is currently in DRAFT format and is NOT a FINAL version Treatment Recommendation:

We recommend against routine use of prehospital cooling with rapid infusion of large volumes of cold intravenous fluid immediately after ROSC (strong recommendation, moderate-quality evidence).

ILCOR ITD

The information provided is currently in DRAFT format and is NOT a FINAL version

Treatment Recommendation:

Impedance Threshold Device + Standard CPR (I) vs Standard CPR (C):

We recommned against routine use of ITD in addition to standard CPR (strong recommendation, high quality of evidence). Values and preferences statement: In making this recommendation we place a higher value on not allocating resources to an ineffective intervention over any yet to be proven benefit for critical or important outcomes.

Impedance Threshold Device + Active Compression Decompression CPR (I) vs Active Compression Decompression CPR (C):

We suggest against the routine use of ITD in addition to Active Compression-Decompression CPR (weak recommendation, very low quality of evidence). Values and preferences statement: In making this recommendation we place a higher value on not allocating resources to an ineffective intervention over any yet to be proven benefit for critical or important outcomes.

Impedance Threshold Device + Active Compression Decompression CPR (I) vs Standard CPR (C): We suggest against the routine use of ITD with Active Compression-Decompression CPR as an alternative to standard CPR (weak recommendation, very low quality of evidence). Values and preferences statement: In making this recommendation we place a higher value on not allocating resources to an intervention with equivocal benefit for critical or important outcomes.

