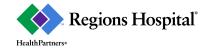
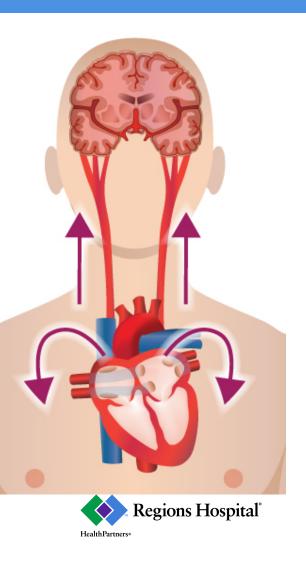

The Emerging Role of ITP Moduation in Resuscitation

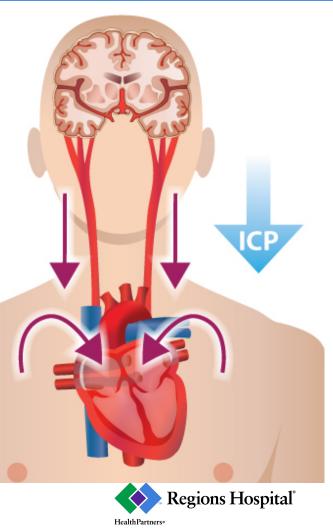

R.J. Frascone, M.D. FACEP Professor, Department of Emergency Medicine University of Minnesota Medical Director Regions Hospital EMS

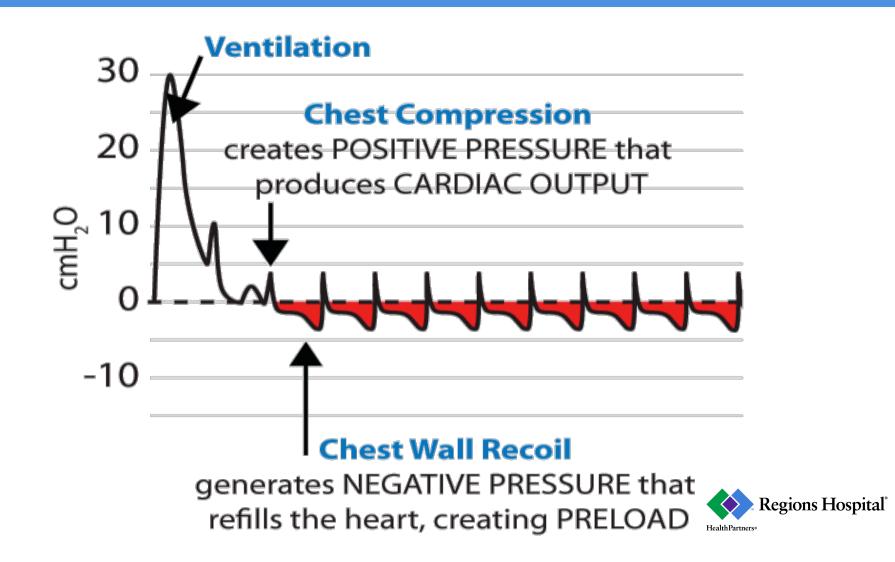
Disclosures


- Investigator for ResQ Trial
- Part of a group of independent investigators who have published a paper analyzing data from ROC PRIMED Study
- I have not financial connections to ACSI/ZoII or Physio Control

R.J. Frascone MD, FACEP Handling the Pressure and Going with the Flow: Using ITP Modulation to Save Lives

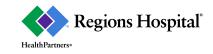
The Two Theories of How CPR Works


- CARDIAC PUMP Theory
 - Heart squeezed between sternum and spine
- THORACIC PUMP Theory
 - POSITIVE PRESSURE generated causes:
 - Blood to be expelled (CARDIAC OUTPUT)
 - Air to exit the lungs
 - Intracranial pressure
 (ICP) to rise
 - Pressurizes venous syst
 - Paravertebral sinuses connect head to chest

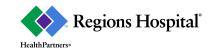

Decompression Phase

• NEGATIVE PRESSURE (vacuum) develops

- Blood is drawn back into heart (PRELOAD)
- Air is drawn into lungs
- Coronary blood flow occurs
- ICP is lowered
 - Increased venous drainage
 - Increased CSF drainage


Airway Pressures During CPR

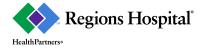
Conventional CPR is Suboptimal



- Even when performed correctly, it provides only:
 - 20 30% of normal
 blood flow to the
 BRAIN
 - 10 20% of normal
 blood flow to the
 HEART

S-CPR vs. ACD CPR

- Standard CPR is completely reliant on chest recoil to achieve preload.
- The chest wall may nor recoil for several reasons
 - The chest wall "softens" with CPR (increased compliance).
 - Chest wall may be to stiff to recoil properly
 - Just doing it wrong
- ACD does not rely on recoil. It will pull the chest wall back whether it wants to come back, or not.
- In addition, manual active decompression hyper expands the chest (goes beyond neutral).


ACD CPR device

ACD CPR: Compression

- Actively <u>compressing</u> the chest, increasing IP pressure and thereby forcing blood out of chest, just like s-CPR.
- Same position as standard CPR
- 40 50 cm (1 ½ 2")
 - Soft chest: 65 lbs
 - Average chest: 90 lbs
 - Stiff chest: 110 lbs

ACD CPR: Decompression

But, unlike S-CPR it actively <u>decompresses the chest</u>, decreasing IP pressure, thereby drawing blood into the chest.

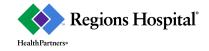
• Typically 15-20 lbs

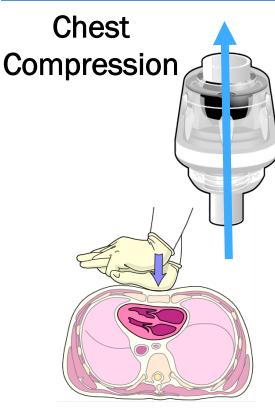


Caution: LUCAS is not ACD

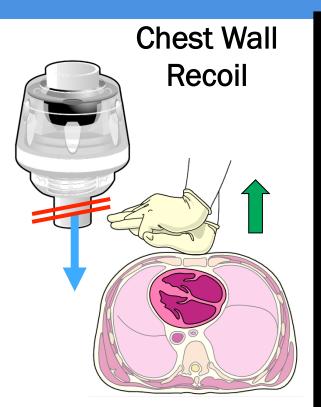


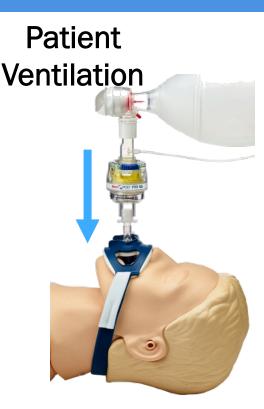
Inefficiency of CPR

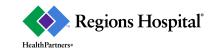

Air is drawn in during chest wall recoil and wipes out the vacuum to re-fill the heart. Heart stops filling as soon as the vacuum is neutralized.


Health Partner

ITD




Airflow Through an ITD

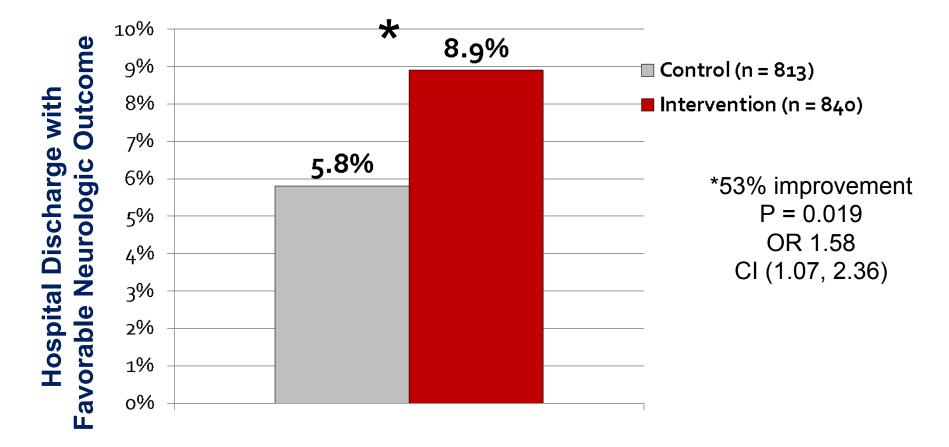

Patient can freely exhale.

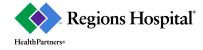
Influx of air is prevented, enhancing the vacuum in the chest.

Patient can be freely ventilated.

ResQTRIAL: 2005 - 2009

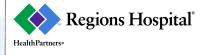
Standard CPR (S-CPR)


versus

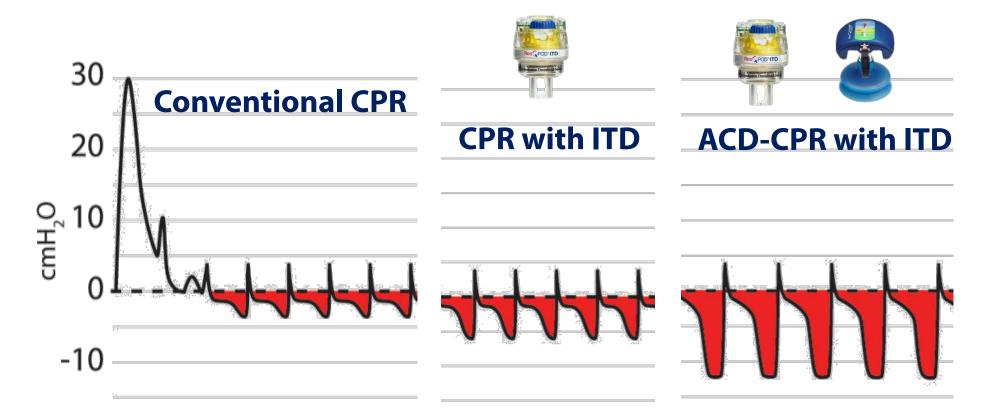

ACD-CPR + ITD (ACD+ITD)

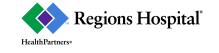
HealthPartners*

Primary Study Endpoint



THE LANCET


"Cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure should be considered as an alternative to standard CPR to increase long-term survival after cardiac arrest."


See Articles page 301

Cutting of access to journals	Profile: Rethy Chhern	ACCELERATE: Combination	TEAM: Adjuvant tamoxifen	India: Towards Universal
in poor countries	See page 291	of aliskiren and amlodipine	and exemestane in early	Health Coverage 2:
See page 273		for initial treatment of hypertension Stepsge 312	breast cancer Scepage 321	Reproductive health, and child health and nutrition See page 332


Airway Pressures During CPR

Research Summary

	ITD with S-CPR	ITD with ACD-CPR
	14 Animal studies	25 Animal studies
	13 Human studies	5 Human studies
Systolic BP	Doubled	Near -normal
Blood flow to heart	Doubled	Quadrupled
Blood flow to brain	↑ 50%	Near -normal
ICP during recoil	Lowered	Lowered further
Functional survival at hospital discharge	↑ 25% or more	† 53%

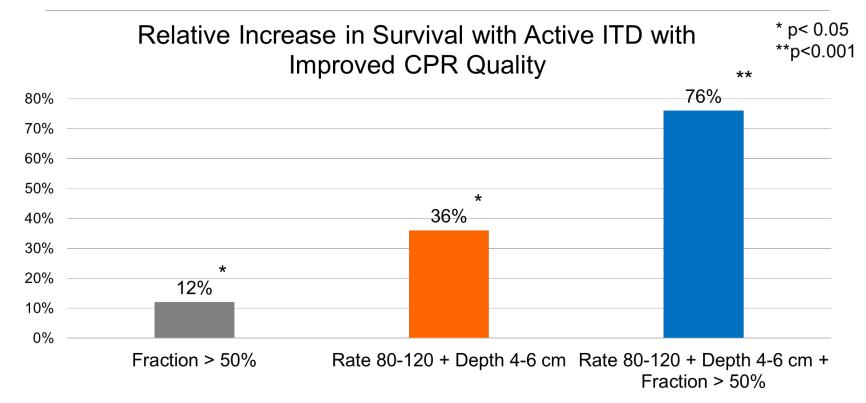
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

A Trial of an Impedance Threshold Device in Out-of-Hospital Cardiac Arrest

 Tom P. Aufderheide, M.D., Graham Nichol, M.D., Thomas D. Rea, M.D., Siobhan P. Brown, Ph.D., Brian G. Leroux, Ph.D., Paul E. Pepe, M.D.,
 Peter J. Kudenchuk, M.D., Jim Christenson, M.D., Mohamud R. Daya, M.D.,
 Paul Dorian, M.D., Clifton W. Callaway, M.D., Ph.D., Ahamed H. Idris, M.D., Douglas Andrusiek, M.Sc., Shannon W. Stephens, E.M.T.-P.,
 David Hostler, Ph.D., Daniel P. Davis, M.D., James V. Dunford, M.D., Ronald G. Pirrallo, M.D., M.H.S.A., Ian G. Stiell, M.D.,
 Catherine M. Clement, R.N., Alan Craig, M.S., Lois Van Ottingham, B.S.N.,
 Terri A. Schmidt, M.D., Henry E. Wang, M.D., Myron L. Weisfeldt, M.D.,
 Joseph P. Ornato, M.D., and George Sopko, M.D., M.P.H.,
 for the Resuscitation Outcomes Consortium (ROC) Investigators

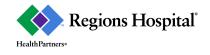
<u>Conclusions</u>: Use of the ITD did not significantly improve survival with satisfactory function among patients with outof-hospital cardiac arrest receiving standard CPR.


The ROC investigators and others asked why did the ITD not perform?

- CPR rates varied greatly in the study population.
- The data was subsetted and when the CPR rates were done correctly a whole different picture emerged.
- Idris et al November 2011 at AHA ReSS
- Idris et al November 2012 at AHA ReSS
- Idris et al January 2013 at NAEMSP

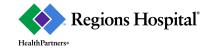
New ROC Analysis: CPR Quality Impacted ITD's Effectiveness

(not considered in 2015 AHA Guidelines)



Yannopoulos, Aufderheide, Abella, Frascone, Goolldloe, Mahoney, Nadkarni, Halperin, O'Connor, Idris, Becker, Pepe. The Effect of CPR Quality: A Potential Confounder of CPR Clinical Trials. *Resuscitation* 94 (2015) 106–113.

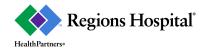
The "Gems" Inside the ROC...



- CPR quality matters
 - Training must focus on achieving high quality CPR
- Sweet spot for chest compressions likely varies depending on whether an ITD was used:
 - 100 120/min for conventional CPR
 - 90 110/min with an ITD

ACD/ITD Device Approved!

FDA: "This device is indicated for use as a CPR adjunct to <u>improve the likelihood</u> of survival in adult patients with non-traumatic cardiac arrest."



Iospital®

Questions? Thank you!

• R. J. Frascone, MD, FACEP

- Email: ralph.j.frascone@healthpartners.com

