

Approach to the <u>CBRN Event</u>: A Framework for Patient Care & Movement

Asa M. Margolis DO, MPH, MS, FACEP, FAEMS Deputy Medical Director, United States Secret Service Associate Professor, Division of Special Operations Johns Hopkins Department of Emergency Medicine

Inside the Mind of the Terrorist

• What characteristics of CWA would be most suitable for use in an attack?

oHigh volatility

Fast & effective absorption via skin and respiratory system

 \circ Rapid onset

 \circ Lethal / incapacitating effects

Chemical-Warfare Agents (CWAs)

Class	Representative Agents	Last Known Use or Attempted Use as a CWA*
Nerve agents (cholinesterase inhibitors)	G-series (sarin, soman, cyclosarin, tabun), V-series (VE, VG, VM, VX), organo- phosphates	Syria, 2017: sarin; Malaysia, 2017: VX
Asphyxiants (blood agents)	Hydrogen cyanide, cyanogen chloride	New York City subway, 2003: cyanide
Opioid agents	Fentanyl, carfentanil, remifentanil	Moscow theater, 2002: fentanyl or carfentanil (used to subdue terrorists)
Anesthetic agents	Chloroform, halothane, nitrous oxide	No known use as CWA
Anticholinergic (antimuscarinic) agents	3-Quinuclidinyl benzilate (BZ), Agent 15 (chemi- cally the same as or related to BZ), atropine	Syria, 2012: Agent 15
Vesicant agents	Mustards (nitrogen and sulfur), lewisite, phosgene oxime	Syria and Iraq, 2016: mustard gas
Caustic agents (acids)	Hydrochloric acid, hydrofluoric acid, sulfuric acid	London, 2017: sulfuric acid
Riot-control agents	Chloroacetophenone (CN), chlorobenzy- lidenemalononitrile (CS), bromobenzyl- cyanide (CA)	Falkland Islands, 1982: "tear gas" used on British troops
Trichothecene mycotoxins	T-2 toxin	Possible use in Vietnam War, 1970: T-2
Pulmonary agents	Chlorine, phosgene, diphosgene	Syria, 2017: chlorine
Botulinum toxin	Botulinum toxin	Tokyo, 1995: botulinum toxin used by Aum Shinrikyo

Ciottone GR. Toxidrome Recognition in Chemical-Weapons Attacks. N Engl J Med. 2018 Apr 26;378(17):1611-1620. doi: 10.1056/NEJMra1705224. PMID: 29694809.

Table 1. Classes of Chemical-Warfare Agents (CWAs) Likely to Be Used in a Civilian Attack.			
Class	Representative Agents	Last Known Use or Attempted Use as a CWA*	
Nerve agents (cholinesterase inhibitors)	G-series (sarin, soman, cyclosarin, tabun), V-series (VE, VG, VM, VX), organo- phosphates	Syria, 2017: sarin; Malaysia, 2017: VX	
Asphyxiants (blood agents)	Hydrogen cyanide, cyanogen chloride	New York City subway, 2003: cyanide	
Opioid agents	Fentanyl, carfentanil, remifentanil	Moscow theater, 2002: fentanyl or carfentanil (used to subdue terrorists)	

The Objective!

• The classes of chemical-warfare agents that are most rapidly lethal (i.e., nerve agents, opioid agents and asphyxiants), should be quickly identified with the use of a toxidromebased system of rapid triage

DOES A FRAMEWORK ALREADY EXIST FOR MANAGEMENT OF CASUALTIES?

Hot Zone (DTC) Warm Zone Cold Zone

Primary Objectives:

- Complete the mission
- Treat the casualty
- Avoid additional casualties

Management Objectives:

- Massive hemorrhage control
- Casualty positioning
- Auto-injector antidotes

Hot Zone

Warm Zone (ITC) Cold Zone

Management Objectives:

- Airway Management
- Respirations
- Circulation
- Head Injury
- Hypothermia

Warm Zone Cold Zone (EVAC)

Hot Zone

Management Objectives:

- Evacuation to definitive therapy
- Frequent reassessment

HOW CAN WE ADAPT THAT FRAMEWORK FOR THE CBRN ENVIRONMENT?

MARCHE²

- M Mask up
- A Antidotes
- R Rapid Spot Decontamination
- C Countermeasures

 Antidotes are challenging in the HOT ZONE
 Medical management
- H Hypothermia
- E Extrication

*DeFeo DR, Givens ML. Integrating Chemical Biological, Radiologic, and Nuclear (CBRN) Protocols Into TCCC Introduction of a Conceptual Model - TCCC + CBRN = (MARCHE)2. J Spec Oper Med. 2018 Spring;18(1):118-123. PMID: 29533446.

Hot Zone (DTC) Warm Zone Cold Zone

What are the Primary Objectives?

- Don PPE
- Move casualty to safer position
- MARCHE²

What are the Management Objectives?

- Mask up
- Stop the poisoning (spot decon)
- Toxidrome-specific antidotes (limited)

Hot Zone (DTC)

• \mathbf{M} – Mask up

- A Antidotes (toxidrome-specific)

 ATNAA/CANA
 Naloxone IN/IM
 Amyl Nitrite
- **R** Rapid Spot Decon

 Life-threatening hemorrhage controlled
 - \circ Remove visible contamination
 - \circ Apply RSDL on affected areas
 - \circ Do NOT breach clothing further in HOT ZONE

What is the Purpose of Decon?

Medical countermeasure that mitigates the conversion of an exposure to a dose

Hot Zone

Warm Zone (ITC) Cold Zone

What are the Management Objectives?

- Gross decon will occur
- MAR<u>CHE</u>²
- If an intervention can be improved via vascular access, gain access AFTER decon
- Take note of interventions performed in the HOT ZONE / WARM ZONE before decon

 TQ assessment, downgrade/conversion, decontamination

 TQ exchange is situation dependent

• Effective and necessary vs. source of ongoing exposure for the casualty

- **C** Countermeasures
 - Antidotes

 Atropine
 CANA (additional)

Airway Management

 Secure airway
 Replace interventions prior to decon

C - Countermeasures

- Respiration

 Nerve Agents
 Atropine
 - Opioids

- Naloxone (10 mg)
- Cyanide (Asphyxiants)
 - Hydroxocobalamin
- Hydrofluoric Acid (Caustics)
 - Calcium gluconate
 - Bronchodilators
- o Blister Agents
 - Bronchodilators

- **H** Hypothermia • Minimize heat loss
 - o Address "wet and naked"

 \circ Cover burns

• **E** – Extrication

Hot Zone Warm Zone Cold Zone (EVAC) What are the Management Objectives?

- Reassessment of interventions
- Enhanced monitoring
- Considerations of delayed onset presentations
- Pain management

Cold Zone (EVAC)

- Definitive airway control
- Use of oxygen
- Cardio-resp monitoring

Cold Zone (EVAC)

- Cardio-resp monitoring
- Delayed Respiratory failure

1.5 mL of a 10% calcium gluconate injection to 6 mL of sterile water in nebulizer

Cold Zone (EVAC)

- Delayed burn presentation
- Pain management

Let's Summarize

- Decon <u>Medical countermeasure</u> that mitigates the conversation of an exposure to a dose
- Toxidrome-based approach for recognition and rapid management of suspected chemical-warfare agents
- MARCHE² is dynamic
- Hot Zone $\underline{M}ask$, $\underline{A}ntidotes$, $\underline{R}apid spot decon$
- Hot Zone Antidotes ATNAA/CANA, Naloxone IN/IM, Amyl Nitrite
- Warm Zone <u>C</u>ountermeasures based on suspected toxidrome, preventing <u>Hypothermia</u>, initiating <u>E</u>xtraction
- Cold Zone Reassessment and advanced monitoring